MATH5011 Exercise 5

Problems 2 and 3 are optional. In Problems 6 and 7 we continue the study of the n-dimensional Lebsegue measure starting in Exercise 3.

- (1) Let $f: X \to (-\infty, \infty]$ be l.s.c. (lower semi-continuous) where X is a topological space. Show that
 - (a) αf is l.s.c. $\forall \alpha \geq 0$,
 - (b) $g \text{ l.s.c} \Rightarrow \min\{f, g\} \text{ l.s.c},$
 - (c) $f_{\alpha} \text{ l.s.c} \Rightarrow \sup_{\alpha} f_{\alpha} \text{ l.s.c.},$
 - (d) g l.s.c. $\Rightarrow f + g$ l.s.c.
 - (e) $\infty > f > 0 \Rightarrow 1/f$ is u.s.c..
- (2) Let X be a locally compact Hausdorff space. Let $f \ge 0$ be l.s.c.. Show that

$$f = \sup\{g : g \in C_c(X), g \ge 0, g \le f\}.$$

(Hint: Use Urysohn's lemma to construct, for $0 < a < f(x_0), g(x_0) = a,$ $g \in [0, a],$ etc.)

- (3) Let X be a compact topological space. Show that every l.s.c function from X to \mathbb{R} attains its minimum, that is, there exists some $x \in X$ such that $f(x) \leq f(y), \forall y \in X$.
- (4) Show that every semicontinuous function is a Borel function.
- (5) Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lebesgue measurable. Show that there exist Borel measurable functions $g, h, g(x) \leq f(x) \leq h(x)$ for all $x \in \mathbb{R}^n$ such that g(x) = h(x) a.e.

- (6) Let λ be a Borel measure and μ a Riesz measure on \mathbb{R}^n such that $\lambda(G) = \mu(G)$ for all open sets G. Show that λ coincides with μ on \mathcal{B} .
- (7) A characterization of the Lebsegue measure based on translational invariance. Let $(\mathbb{R}^n, \mathcal{B}, \mu)$ be a Borel measure space whose measure μ is translational invariant and is nontrivial in the sense that there exists some Borel set Asuch that $\mu(A) \in (0, \infty)$. Show that there exists a positive constant c such that $c\mu$ is the restriction of the Lebsegue measure on \mathcal{B} . Hint: First show that $\mu(C) = \mu(\overline{C})$ for every open cube C and then appeal to the problem above.
- (8) Let K be compact in \mathbb{R}^n and $K^{\varepsilon} = \{x : \operatorname{dist}(x, K) < \varepsilon\}$ be open. Show that $\mathcal{L}^n(K^{\varepsilon}) \to \mathcal{L}^n(K)$ as $\varepsilon \to 0$.
- (9) Let A and B be non-empty measurable sets in \mathbb{R}^n such that $(1 \lambda)A + \lambda B$ is also measurable for all $\lambda \in (0, 1)$. Show that Brunn-Minkowski inequality is equivalent to either one of the following inequalities:
 - (a) $\mathcal{L}^n((1-\lambda)A + \lambda B) \ge (1-\lambda)\mathcal{L}^n(A) + \lambda \mathcal{L}^n(B).$
 - (b) $\mathcal{L}^n((1-\lambda)A + \lambda B) \ge \min \{\mathcal{L}^n(A), \mathcal{L}^n(B)\}.$